(iva:

LIVA ACTIVE LIGHTNING RODS

					32%	25	LAP-BX 1	
Order code	SICAL PRO	PERTIES Package Size	s (Mt.) tandards)	0				
LAP -BX 125	Length: 80 cm Net weight: 4.20 kg	17-17-00	40	Level	Level 2	Level 3	Level 4	
	Gross weight: 4.60 kg	17x17x80 cm	40 µsec.	58	66	76	84	

(*) Δt value shows the early streamer time advantage that a lightning rod (ESE lightning rod, for instance) has in arresting the lightning, compared to an ordinary capture terminal (S.R.). Bigger Δt value means that the active reaction of the lightning rod is better. It shows that it can attract the lightning to itself at a higher point, at a larger protection diameter and fastly.)

(**) It involves the situation that the lightning rod is mounted at least 6 m. higher than tha highest point of the building to be protected, with the help of the lightning pole. The protection diameter is calculated by taking into account the approximate early streamer warning time.

LIVA ACTIVE LIGHTNING RODS

B. Early Streamer Emission System (ESE) and Piezo Crystallized Lightning Rod:

MATERIAL: The metal components of the conductor rod, which will carry the lightning, are produced of stainless steel (Inox) to resist against chemical interactions and corrosion. This feature of the lightning rod allows it to remain strong and durable, just like the first day, against heavy elements of the nature.

OPERATION SYSTEM:

Electro Atmospheric Field and Wind Effective Liva Active Lightning Rod, which works in accordance with the principle of Early Streamer Emission System (ESE) and Piezo Crystallized Emission System, obtains its energy from the density changes between electrostatic and electromagnetic fieds in the air, and making use of the dynamic energy of the wind.

- 1. Capture Terminal
- 2. Wind Wings
- 3. Body;
- (a) Energy Block
- (b) Piezo Crystals and related equipment
- 4. Bottom Mil
- 5. Conductor Rod Connection Adaptor

TESTS AND DOCUMENTS

You can find below the tests that Liva Active Lightning Rods underwent.

Lightning Surge Voltage By-Passing Time (Δ t) **Test:** Lightning Surge Voltage By-Passing (Early Streamer Warning) Time(Δ t) Test at NFC 17-102 (Appendix C) was applied to the Lightning Rod at the High Voltage Laboratories of the Middle East Technical University (METU) Department of Electrics and Electronics. The tests proved that the Lightning Rod is in conformity with the relevant standards.

Gost Document: The Lightning Rod has "GOST" Document. **CE Certificate:** The Lightning Rod has received "CE" Conformity to Europe document.

Warranty Period: The Lightning Rod has "30-Year Warranty" Document.

TABLE OF LIVA LIGHTNING RODS PROTECTION LEVELS

Prot	Protection		LEVEL- 1							LEVEL- 2						LEVEL- 3							LEVEL- 4						
Levels		210	175	125	0/0)	040	250	X 220	(210	(175	125	070	040	250	X 220	210	175	125	070	040	250	X220	210	175	125	0/0	040	(250	X220
Type of Lightning		LAP-AX	LAP-BX	LAP-BX 125	LAP-CX 070	LAP-CX 040	LAP-DX250	LAP-PEX 220	LAP-AX210	LAP-BX175	LAP-BX	LAP-CX 070	LAP-CX 040	LAP-DX 250	LAP-PEX 220	LAP-AX 210	LAP-BX	LAP-BX	LAP-CX 070	LAP-CX 040	LAP-DX	LAP-PEX 220	LAP-AX 210	LAP-BX	LAP-BX 125	LAP-CX 070	LAP-CX 040	LAP-DX 250	LAP-PEX 220
	ods	Radius of Protection Area (Mt.)						Radius of Protection Area (Mt.)						Radius of Protection Area (Mt.)							Radius of Protection Area (Mt.)								
	4	100	81	58	48	39	115	155	108	89	65	55	45	123	164	120	100	74	64	53	134	176	130	110	83	72	60	146	188
(II)	5	100	82	58	49	39	115	155	109	90	65	56	46	124	164	121	100	75	65	54	135	177	131	110	84	72	61	146	188
Pole (6	101	82	58	49	40	115	155	109	90	66	56	46	124	164	121	101	76	65	54	135	177	131	111	84	73	62	146	188
the	8	102	82	59	50	40	115	156	110	90	66	57	47	124	165	122	101	77	66	56	136	177	132	111	85	75	63	147	189
Height of	10	102	82	59	50	41	116	156	110	91	67	58	48	124	165	122	102	77	67	57	137	178	133	112	87	76	65	148	190
Hei	15	102	83	60	51	42	116	156	111	92	68	59	50	125	165	123	104	80	70	60	138	178	135	114	89	79	69	149	191
	20	102	83	60	51	42	116	156	112	92	69	60	51	126	166	125	105	81	72	62	139	179	136	116	92	82	72	151	192

